a2 United States Patent

US009491265B2

10) Patent No.: US 9,491,265 B2

Kuzmack et al. 45) Date of Patent: *Nov. 8, 2016
(54) NETWORK COMMUNICATION PROTOCOL (58) Field of Classification Search
PROCESSING OPTIMIZATION SYSTEM ~ CPC oo HO4L 43/12

(71) Applicant: Dell Products L.P., Round Rock, TX
(US)

(72) Inventors: Eric Alan Kuzmack, Georgetown, TX
(US); Hendrich M. Hernandez, Round
Rock, TX (US); Robert Lee Winter,
Burnet, TX (US); Geng Lin, Cupertino,
CA (US)

(73) Assignee: Dell Products L.P., Round Rock, TX
(US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

This patent is subject to a terminal dis-
claimer.

(21) Appl. No.: 14/941,202

(22) Filed: Nov. 13, 2015

(65) Prior Publication Data
US 2016/0080530 Al Mar. 17, 2016

Related U.S. Application Data

(63) Continuation of application No. 13/774,158, filed on
Feb. 22, 2013, now Pat. No. 9,191,262.

(51) Int. CL
GOGF 15/16 (2006.01)
HO4L 29/06 (2006.01)
HO4L 29/08 (2006.01)
HO4L 12/26 (2006.01)
(52) US.CL
CPC oo HO4L 69/163 (2013.01); HO4L 29/06

(2013.01); HO4L 29/06006 (2013.01); HO4L
29/08072 (2013.01); HO4L 43/12 (2013.01);
HO4L 69/12 (2013.01)

IDENTIFY TRAFFIC TYPE FOR APP
PROCESSING ENGINE
74
CONNECTION REQUEST
504

STATE VARIABLES
512

SET FLOW PATH FOR PROTOCOL
PROCESSING ENGINE COMM.
DATA AND CONTROL DATA
514

BEGIN DATA TRANSFER
518

. N
e 8
R e
DEFAULT
SELECT PROTOCOL PROCESSING
ENGINE AND PASS CONNECTION

709/220, 224, 226; 370/463
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

7,961,712 B2 6/2011 Rabenko et al.
7,991,008 B2 8/2011 Winter
8,370,483 B2* 2/2013 Choong HO4L 41/12
709/224
(Continued)

OTHER PUBLICATIONS

http://publib.boulder.ibm.com/infocenter/zos/v Ir11/index.
jsp?topic=/com.ibm.zos.r11.halz002/multselect htm.

Primary Examiner — Khanh Dinh
(74) Attorney, Agent, or Firm — Haynes and Boone, LLP

(57) ABSTRACT

A protocol processing system includes a plurality of com-
munication interfaces. A control head-end is operable to
receive a protocol processing engine identifier over a net-
work through one of the communication interfaces from an
external system. A plurality of optimized protocol process-
ing engines are coupled to the control head-end, and the
control head-end is operable to select a first optimized
protocol processing engine from the plurality of optimized
protocol processing engines that is identified by the protocol
processing engine identifier. In response to being selected,
the first optimized protocol processing engine handles com-
munications between an application processing system and
the external system. The first optimized protocol processing
engine may be an optimized TCP/IP stack that receives
operating system data through a first communication inter-
face from the application processing system and sends
network communication data over the network through the
second communication interface to the external system.

17 Claims, 8 Drawing Sheets

US 9,491,265 B2
Page 2

(56)

References Cited

U.S. PATENT DOCUMENTS

8,958,297 B1*

9,015,690 B2 *

2/2015 Millerccoeveiinne

4/2015 Ye

HO4L 47/22
370/235
GOGF 8/443
717/151

9,191,262 B2* 11/2015
2003/0167348 Al* 9/2003

2003/0200343 Al* 10/2003

2013/0114423 Al 5/2013

* cited by examiner

Kuzmack
Greenblat

Greenblat

Nicolas

.......... HO4L 29/06006

HO4L 12/42
709/251
GO6F 15/78
709/251

U.S. Patent Nov. 8, 2016 Sheet 1 of 8 US 9,491,265 B2

B S XRRRREEENEEY

wid

M

110
)
¥4

s
%

R ———

118
/

7
o8

b Lo Ll e
3 IS < 5
‘\\ N &

%

= = e R
ey g o I
i Lo A& o e
&3 P Aoy SR et
. ¥y - o i N
Foon Y e B (.9
-t Lot = iL
S & &% b
= <L %
~— e &

US 9,491,265 B2

Sheet 2 of 8

Nov. 8, 2016

U.S. Patent

¢

Ol

370

L wEISAS
ONISSIO0Md
NOLLYDAY N

ATF | i ‘ w R4

iz s onsAs et
(SAAISAS el 800) - ONISSIOONd | ONISEIO0N
WNEDE Yo HOMUEN 00010¥d MO o
m S L CEIWNLEO b

e e e \

(2414

\ WALSAS

807 DNISE3004d
sNg NOUYOddY 55l
X,
N
oo

US 9,491,265 B2

Sheet 3 of 8

Nov. 8, 2016

U.S. Patent

£ Ol

BOF WHLSAS DNIZSID0ONEd NOILYIIIddY

¥O% b3
* wu<wa§ INIONG
-/ . NOLYDINNWNOD ONISSAOOU
\ . NOLLVYOadY
567
sng

US 9,491,265 B2

Sheet 4 of 8

Nov. 8, 2016

U.S. Patent

P Old

»

962
N3

Uy
{ding usn) INIONT ONIESID0U

10201CHd Q32140 48

B30y

{doid) ANONT DNISSIO0H
TQ20L0Hd G32IE0 W/

§

150%
{d100) INIDNT DNISSAOOUd
1000L0Hd Q3ZHLAO 49

i

T0F WILSAS
ONISSI00U 70% aNoNE
1000108 NOUYZINILAO
QEZINLO ONISSIO0H
1030104
85y
FOVAHALN -
NOLVONNANOD | o T
WALSAS TOHLNOD
BNISSI00Ud
NOLLYOI ¥

230¥
(dLIH) INIONT ONISSID0Hd
TO20LOYd G320 48

501
FOVAYIIN]
WAOO
SHOMLIN

7
(sseie:A0) INIONT ONISSIO0U
000LOM] TIZHILAC o

3508
(pedsyni) INONT DNISSIOOUd
1000L04d G3ZWLO 5.

H

4sgp
($08) INIONS DNISSI00N
FO001CHd G371 L0 wd

qary
FOVAYALN
WAOD
SHOMIIN

¥

I
FOVAITINS
WHDD
AUCALIN

86¢
AHOMIIN

T g
{ddvand INIONT ONISSIOOHd
OO0L0Hd 320)

4

§ Old T

LAIFGNOD
HAISNYHL

018
NOLLDINNOD 385070

EN

US 9,491,265 B2

Sheet 5 of 8

Nov. 8, 2016

U.S. Patent

b

gig
H34SNYAL VIV NiD33

¥i5
Vv TOUINGD GNY ViVl
TAWRNCO INIONT DNISEE0CH
103010Hd ¥04 Hivd MO14 138
t
a8
SITEYIMVA A1VIS

NOILOZNNCD 55Yd ONY 3NIDNI
ONISSI00H T000L0Md 1537138
NY430 a A

”

L BBE e P L .
SSNEE <7 (BIEYIVAY BNIONTG e
. HO NOUD3NNGD - ONISS3008d T000L08d..
T, 38010

¥o5
153003 NOILOZNNGS

s
ANIOND DNIBSZ00H
cd¥ HOd BdAL Dd4VHL AHINIC

50710

o

US 9,491,265 B2

Sheet 6 of 8

Nov. 8, 2016

U.S. Patent

008

9 'Oid
¥0B
YEYG / - 00
HEHUINSC SNONS DNISE300HL T0Z0104d
ONIIIY CANY 1) SNOILIO i
HAINIO INIDEN 208 ,/ PNSHIIHD
MQOMIA IR PR W3] wOv L oM | OEAMIS3Y | MR
HIGAN NN IDCIMONARDY
HIGWON BONENCEE

1M0d NOULYRILSED 1O 30NN0S

23 ¥z ET 3L 8L L SL TH Lol 8 o€ ol

BL O

201 ¥3AMES oo "
st 174 Pz

Y SEZENE HRLEAS
on DRILVHIEO

US 9,491,265 B2

s gt il : 557 51 [$ii 7}
EZBRLAG AV 4HI LM QN2 OWEH T..............l HOYLS iE yis YOWiS s
f*4 dad i oekdOl B il M8 Db b Hot

1
+
3

2 vis
e Mot

NI

T zed

Sheet 7 of 8

Nov. 8, 2016

U.S. Patent

>
e
3
3
4
1
e,
3
3
3
3
]
1
1]
) 4

811
HHOMLIN / T

US 9,491,265 B2

Sheet 8 of 8

Nov. 8, 2016

U.S. Patent

44 'Old
201 d3nuas _— —
b 561 0L
ATV DEN WALSAS
Ot R RIER
&
w...al.s.e}xﬁ
: yre
i
BBZ YE15AB - o B
dl 51l Zit ; ¥
BOVINILN ONF-QYIH et L HOYLS i
"Of Jal Y cidDlowB BdOLub :
1 Iy o o
! 1
H
e, t
9t ’ m
{giom - b
3 ; 44
:
§
t
3 - o *
Tl T ~¥ MOVIS
4 orL T R 1 2
ot .
7 p
i , ¥ei
WHOMIEN o
743
P3ISAS TYNEELXT

00

US 9,491,265 B2

1
NETWORK COMMUNICATION PROTOCOL
PROCESSING OPTIMIZATION SYSTEM

CROSS-REFERENCE TO RELATED
APPLICATIONS

This is a Continuation application to U.S. Utility appli-
cation Ser. No. 13/774,158, filed Feb. 22, 2013, entitled
“NETWORK COMMUNICATION PROTOCOL PRO-
CESSING OPTIMIZATION SYSTEM,” the disclosures of
which is incorporated herein by reference in their entirety.

BACKGROUND

The present disclosure relates generally to information
handling systems, and more particularly to a protocol pro-
cessing optimization system used for information handling
system network communications.

As the value and use of information continues to increase,
individuals and businesses seek additional ways to process
and store information. One option is an information han-
dling system (IHS). An IHS generally processes, compiles,
stores, and/or communicates information or data for busi-
ness, personal, or other purposes. Because technology and
information handling needs and requirements may vary
between different applications, IHSs may also vary regard-
ing what information is handled, how the information is
handled, how much information is processed, stored, or
communicated, and how quickly and efficiently the infor-
mation may be processed, stored, or communicated. The
variations in IHSs allow for IHSs to be general or configured
for a specific user or specific use such as financial transac-
tion processing, airline reservations, enterprise data storage,
or global communications. In addition, IHSs may include a
variety of hardware and software components that may be
configured to process, store, and communicate information
and may include one or more computer systems, data storage
systems, and networking systems.

THSs communicate with each other over networks using
communication protocols. The Internet protocol suite refers
to the set of communications protocols used for the Internet
and similar networks, and is commonly referred to as the
TCP/IP stack in an IHS in reference to the first networking
protocols it defined: Transmission Control Protocol (TCP)
and Internet Protocol (IP). Conventionally, TCP/IP stacks
have been co-resident with operating systems on any infor-
mation handing system that required communication ser-
vices. This intertwining of network communication protocol
stacks and operating systems was a choice made by early
developers working with one processing resource in the IHS
(e.g., one processor and one memory device) in order to
achieve desired speed and efficiency for the IHS.

Today, there are many application-specific enhancements
and offloads (e.g., stateful offloads (e.g., transmission con-
trol protocol (TCP) or Internet protocol (IP) offloads that
keep track of the protocol connection state) and stateless
offloads (e.g. offloads that do checksumming, large segmen-
tation handling for TCP, etc.) that offload work from the host
CPU) that may be implemented in TCP/IP stacks. With
conventional client/server models, a TCP/IP stack on one
platform may communicate with a TCP/IP stack on any of
a plurality of other platforms, ensuring that a single TCP/IP
stack instance will not be fully optimized to provide superior
application performance over the network using TCP/IP for
every type of service and/or offload that may be desired.
Enhancements that have been proposed to TCP/IP that adapt
it to better performance for specific applications or applica-

30

40

45

50

2

tion scenarios become a burden to carry over on every
TCP/IP stack release or revision. No conventional IHS
TCP/IP stack will have all the enhancements or implement
all the TCP/IP Requests For Comment (RFCs), as it is
simply not practical to provide a “super” TCP/IP on every
THS. Furthermore, some enhancements for TCP/IP may be
counter-productive (e.g., a TCP stack that does small mes-
sage passing will not require a large maximum transmission
unit (MTU) enhancement.)

Accordingly, it would be desirable to provide an improved
network communication system.

SUMMARY

According to one embodiment, a protocol processing
system includes a first communication interface that is
operable to couple to an application processing system; at
least one second communication interface that is operable to
couple to a network; a control head-end that is operable to
receive a protocol processing engine identifier through the at
least one second communication interface from an external
system over the network; and a plurality of optimized
protocol processing engines coupled to the control head-end,
wherein the control head-end is operable to select a first
optimized protocol processing engine of the plurality of
optimized protocol processing engines that is identified by
the protocol processing engine identifier, wherein in
response to being selected, the first optimized protocol
processing engine handles communications between the
application processing system and the external system.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic view illustrating an embodiment of
an information handling system.

FIG. 2 is a schematic view illustrating an embodiment of
a networked system.

FIG. 3 is a schematic view illustrating an embodiment of
an application processing system used in the networked
system of FIG. 2.

FIG. 4 is a schematic view illustrating an embodiment of
an optimized protocol processing system used in the net-
worked system of FIG. 2.

FIG. 5 is a flow chart illustrating an embodiment of a
method for network communications.

FIG. 6 is a graphical view illustrating an embodiment of
a packet.

FIG. 7a is a schematic view illustrating an embodiment of
a networked system operating according to an embodiment
of the method of FIG. 6.

FIG. 74 is a schematic view illustrating an embodiment of
a networked system operating according to an embodiment
of the method of FIG. 6.

DETAILED DESCRIPTION

For purposes of this disclosure, an IHS may include any
instrumentality or aggregate of instrumentalities operable to
compute, classify, process, transmit, receive, retrieve, origi-
nate, switch, store, display, manifest, detect, record, repro-
duce, handle, or utilize any form of information, intelli-
gence, or data for business, scientific, control, entertainment,
or other purposes. For example, an ITHS may be a personal
computer, a PDA, a consumer electronic device, a display
device or monitor, a network server or storage device, a
switch router or other network communication device, or
any other suitable device and may vary in size, shape,

US 9,491,265 B2

3

performance, functionality, and price. The IHS may include
memory, one or more processing resources such as a central
processing unit (CPU) or hardware or software control logic.
Additional components of the IHS may include one or more
storage devices, one or more communications ports for
communicating with external devices as well as various
input and output (I/0O) devices, such as a keyboard, a mouse,
and a video display. The IHS may also include one or more
buses operable to transmit communications between the
various hardware components.

In one embodiment, IHS 100, FIG. 1, includes a processor
102, which is connected to a bus 104. Bus 104 serves as a
connection between processor 102 and other components of
THS 100. An input device 106 is coupled to processor 102 to
provide input to processor 102. Examples of input devices
may include keyboards, touchscreens, pointing devices such
as mouses, trackballs, and trackpads, and/or a variety of
other input devices known in the art. Programs and data are
stored on a mass storage device 108, which is coupled to
processor 102. Examples of mass storage devices may
include hard discs, optical disks, magneto-optical discs,
solid-state storage devices, and/or a variety other mass
storage devices known in the art. THS 100 further includes
a display 110, which is coupled to processor 102 by a video
controller 112. A system memory 114 is coupled to processor
102 to provide the processor with fast storage to facilitate
execution of computer programs by processor 102.
Examples of system memory may include random access
memory (RAM) devices such as dynamic RAM (DRAM),
synchronous DRAM (SDRAM), solid state memory
devices, and/or a variety of other memory devices known in
the art. In an embodiment, a chassis 116 houses some or all
of the components of THS 100. It should be understood that
other buses and intermediate circuits can be deployed
between the components described above and processor 102
to facilitate interconnection between the components and the
processor 102.

Referring now to FIG. 2, an embodiment of a networked
system 200 is illustrated. The networked system 200
includes a plurality of application processing systems such
as the first application processing system 202a, the second
application processing system 2024, and up to the N7
application processing system 202¢ in the illustrated
embodiment. Each of the application processing systems
202a, 20254, and 202¢ are coupled to an optimized protocol
processing system 204 by a bus 206 which may be a high
speed bus such as, for example, a peripheral component
interconnect express (PCle) bus, a Universal Serial Bus
(USB), a Thunderbolt bus available from Intel® Corpora-
tion, and/or a variety of other buses known in the art. The
optimized protocol processing system 204 is coupled to a
network 208 such as, for example, a Local Area Network
(LAN), a Storage Area Network (SAN), the Internet, a WiFi
network, and/or a variety of other networks known in the art.
The network 208 is coupled to one or more external systems
210.

As discussed in further detail below, the systems and
methods of the present disclosure provide an architecture in
which network communication services are split from appli-
cation processing services. In some embodiments, the appli-
cation processing systems and from the optimized protocol
processing system may each be located in separate chassis.
For example, each of the application processing systems
202a, 2025, and/or 202¢ may be a separate server including
an operating system, and the optimized protocol processing
system 204 may be provided as a separate device that
couples to any of the application processing systems 202a,

10

20

30

40

45

50

4

2025, and 202c¢ through a PCle bus (i.e., the bus 206), along
with coupling to the network 208. In other embodiments,
one or more of the application processing systems 202a,
2025, and 202¢ and the optimized protocol processing
system 204 may be included in the same chassis. For
example, a server chassis may include an application pro-
cessing system that includes an operating system (e.g., the
application processing system may be provided by a pro-
cessing system in the server chassis executing a first set of
instructions on a memory system in the server chassis), and
that server may also include the optimized protocol process-
ing system 204 (e.g., the optimized protocol processing
system 204 may be provided by a processing system in the
server chassis executing a second set of instructions on a
memory system in the server chassis) that couples to the
application processing system through a PCle bus (i.e., the
bus 206), along with coupling to the network 208. In either
embodiment, the optimized protocol processing system 204
provides, upon demand, specific, high-quality, and opti-
mized protocol processing engines (e.g., optimized TCP/IP
stacks) to provide optimized network connections and data
transfer between any of the application processing systems
202a, 2024, and 202¢ and an external system 210. While a
few examples of the networked system 200 have been
discussed, one of skill in the art will recognize that a wide
variety of configurations and devices may be used to provide
the networked system 200 while remaining within the scope
of the present disclosure.

The one or more external systems 210 coupled to the
network 208 may include conventional systems or systems
according to the teachings of the present disclosure. For
example, any of the one or more external systems 210 may
include conventional servers that include an operating sys-
tem and a network communication system (e.g. a TCP/IP
stack coupled to a communication interface) that is co-
resident with the operating system. In another example, any
of the external systems 210 may include one or more
application processing systems (e.g., similar to the applica-
tion processing systems 202a, 2025, and 202¢) and an
optimized protocol processing system (e.g., similar to the
optimized processing system 204) that operate as described
below. In an embodiment, any of the one or more external
systems 210 may be the IHS 100 or include some or all of
the components of the IHS 100 discussed above with
reference to FIG. 1.

Referring now to FIG. 3, an embodiment of an application
processing system 300 is illustrated. The application pro-
cessing system 300 is an example of one of the application
processing systems 202a, 2025, and/or 202¢ discussed
above with reference to FIG. 2. In an embodiment, the
application processing system 300 may be the THS 100 or
include some or all of the components of the THS 100
discussed above with reference to FIG. 1. The application
processing system 300 includes an application processing
engine 302 that may include instruction that are stored on a
memory system and that, when executed by a processing
system, cause the processing system to perform the func-
tions of the application processing engine 302. In the
examples discussed below, the application processing
engine 302 is an operating system. However, in other
embodiments, the application processing engine 302 may
include scientific applications, data driven applications,
compute-intensive applications, and/or a variety of other
application processing engines known in the art.

The application processing engine 302 is coupled to a
communication interface 304 that is coupled to the bus 206.
In an embodiment, the communication interface 304 is a

US 9,491,265 B2

5

basic input/output (I/O) interface such as, for example, a
“raw Ethernet” interface, a Peripheral Component Intercon-
nect express (PCle) interface, an unformatted information
serial stream interface, and/or a variety of other basic 1/O
interfaces that are operable to provide communications from
the application processing engine 302 to the bus 206.
Application processing is the primary responsibility of
application processing systems such as, for example, servers
and/or other compute resources. Communication services
are necessary for the majority of applications but can detract
from the proper use of the application processing system 300
or other compute resource. Additionally, the combining of
application processing engines, such as operating systems,
with networking capabilities within the application process-
ing system (e.g. a server or other computer resource) pro-
duces administrative domain conflicts and can blur function
and responsibility. Thus, in some embodiments, the appli-
cation processing system 300 may benefit from the teachings
of the present disclosure in that the application processing
system 300 may not include a network communication
protocol processing engine that is used to provide commu-
nication services, thus separating the application processing
from the communication services. For example, the appli-
cation processing engine 302 may be an operating system
that provides raw operating system data (e.g., an unformat-
ted data stream or streams) through a basic /O communi-
cation interface 304 to transmit that raw operating system
data over a PCle bus 206. However, in other embodiments,
the application processing system 300 may include one or
more network communication protocol processing engines
(e.g., in such a scenario, the one or more network protocol
processing engines included in the application processing
system 300 may not be optimized for all desired commu-
nications scenarios.) While a few examples of application
processing systems have been provided, one of skill in the
art will recognize that a wide variety of application process-
ing systems will fall within the scope of the present disclo-
sure.

Referring now to FIG. 4, an embodiment of an optimized
protocol processing system 400 is illustrated. The optimized
protocol processing system 400 is an example of the opti-
mized protocol processing system 204 discussed above with
reference to FIG. 2. In an embodiment, the optimized
protocol processing system 400 may be the IHS 100 or
include some or all of the components of the THS 100
discussed above with reference to FIG. 1. The optimized
protocol processing system 400 includes a protocol process-
ing optimization engine 402 that includes a control head-end
404 and a plurality of optimized protocol processing engines
4064, 4065, 406¢, 406d, 406¢, 406/, 406g, and 406/. In an
embodiment, any or all of the protocol processing optimi-
zation engine 402, the control head-end 404, and the plu-
rality of optimized protocol processing engines 406a-# may
be provided as instruction on a memory system that, when
executed by a processing system cause the processing sys-
tem to perform the functions discussed below. As discussed
in further detail below, the control head-end 404 operates to
configure an optimized protocol processing engine selected
from the plurality of optimized protocol processing engines
406a-/ to handle communications between an external sys-
tem 210 and any of the application processing systems 202a,
2025, and 202c¢. As further discussed below, each of the
plurality of optimized protocol processing engines 406a-/
includes enhancements and/or application specific improve-
ments to optimize the external system/application process-
ing system communications.

25

40

45

6

In the illustrated embodiment, the first optimized protocol
processing engine 406a has been optimized for the Internet
Wide Area Remote Direct Memory Access (RDMA) Proto-
col (iIWARP). For example, the first optimized protocol
processing engine 406a may be a TCP/IP stack that includes
iWARP TCP enhancements and/or improvements such as,
for example, stack-to-stack communication efficiencies for
node-to-node transmission. In the illustrated embodiment,
the second optimized protocol processing engine 4065 has
been optimized for the Internet Small Computer System
Interface (iSCSI). For example, the second optimized pro-
tocol processing engine 4065 may be a TCP/IP stack that
includes iSCSI TCP/IP enhancements and/or improvements
such as, for example, TCP fast re-transmit according to RFC
2581 and delayed acknowledge packets according to RFC
1122. In the illustrated embodiment, the third optimized
protocol processing engine 406¢ has been optimized for
Multipath TCP. For example, the third optimized protocol
processing engine 406¢ may be a TCP/IP stack that includes
Multipath TCP enhancements and/or improvements accord-
ing to RFC 6182. In the illustrated embodiment, the fourth
optimized protocol processing engine 4064 has been opti-
mized for Wireless TCP. For example, the fourth optimized
protocol processing engine 4064 may be a TCP/IP stack that
includes Wireless TCP enhancements and/or improvements
according to RFC 2001 and other RFCs related to Wireless
TCP. In the illustrated embodiment, the fifth optimized
protocol processing engine 406¢ has been optimized for
Hypertext Transter Protocol (HTTP). For example, the fifth
optimized protocol processing engine 406¢ may be a TCP/IP
stack that includes HTTP enhancements and/or improve-
ments. In the illustrated embodiment, the sixth optimized
protocol processing engine 406/ has been optimized for Data
Center TCP (DCTP). For example, the sixth optimized
protocol processing engine 406/ may be a TCP/IP stack that
includes DCTP enhancements and/or improvements such as,
for example, enhanced congestion notification according to
RFC 3168. In the illustrated embodiment, the seventh opti-
mized protocol processing engine 406g has been optimized
for proprietary TCP enhancements and/or improvements. In
the illustrated embodiment, the eighth optimized protocol
processing engine 406~ has been optimized for general
purpose TCP/IP.

While a few examples of optimized protocol processing
engines have been described above, one of skill in the art
will recognize that these are only a few of the known specific
modifications to TCP/IP to support applications and appli-
cation scenarios. As many more specific modifications to
TCP/IP to support applications and application scenarios are
anticipated in the future, it should be understood that a wide
variety of optimized protocol processing engines may be
implemented in the architecture discussed herein to facilitate
modifications and enhancements to TCP/IP. For example,
optimized protocol processing engines may be optimized for
live migration or VMotion (available from VMWare, Inc.)
TCP enhancements or improvements such as, for example,
enhancements that provide for the handling of large data
movement, fast retransmit to eliminate excessive acknowl-
edgments (AKCs) (e.g., such as those used in the Internet
Small Computer System Interface), long connection tim-
eouts for wireless networks, small packet optimization for
message passing stacks, elimination of TCP and IP check-
sum over lossless data link layer networks, and/or a variety
of other optimization characteristics known in the art. Fur-
thermore, while the examples discussed herein are directed
to TCP/IP stack optimization, other protocol processing
engines such as, for example, those used for open shortest

US 9,491,265 B2

7

path first (OSPF), virtual extensible local area network
(VXLAN), network virtualization using generic routing
encapsulation (NV-GRE), routing information protocol
(RIP), border gateway protocol (BGP), Internet protocol
version 6 (IPv6), stream control transmission protocol
(SCTP), Banyan virtual integrated network services
(VINES), 802.1Qbb/az/au data center bridging (DCB) and
other layer 2 (L.2) state machines, InfiniBand (IB) transport,
Internet wide area remote direct access memory (RDMA)
Protocol iWARP), RDMA over converged Internet (RoCE),
and/or a variety of other protocol processing engines will
fall within the scope of the present disclosure.

The protocol processing optimization engine 402 is
coupled to an application processing system communication
interface 408 that is coupled to the bus 206, and to a plurality
of network communication interfaces 410a, 4105, and 410¢
that are coupled to the network 208. In the embodiment
illustrated in FIG. 4, the control head-end 404 is shown as
being coupled to the application processing system commu-
nication interface 408, while the optimized protocol pro-
cessing engines 406a-/ are illustrated as being coupled to
each of the network communication interfaces 410a, 4105,
and 410c. However, as discussed below, the control head-
end 404 is also coupled to and operable to communicate via
each of the network communication interfaces 410a, 4105,
and 410c¢, while each of the optimized protocol processing
engines 406a-/ are coupled to and operable to communicate
via the application processing system communication inter-
face 408.

In an embodiment, the application processing system
communication interface 408 is a basic input/output (/O)
interface such as, for example, an interface for transmitting
an unformatted data stream or streams, and/or a variety of
other basic I/O interfaces that are operable to receive com-
munications from the application processing engine 302
over the bus 206. For example, the control head-end 404
and/or any of the optimized protocol processing engines
406a-h may receive raw operating system data through a
basic /O communication interface 408 that is transmitted
over a PCle bus 206 by any of the application processing
systems 202a, 2025, and 202¢. In an embodiment, the
network communication interfaces 410a, 4105, and 410c¢
may include any of a Network Interface Controller or Card
(NIC), a LAN On Motherboard (LOM), a network daughter
card (NDC), a converged network adapter (CAN), a host bus
adapter (HBA) such as a fiber channel HBA, a host channel
adapter (HCA) such as a IB HCA, and/or a variety of other
network communication interfaces known in the art for
communicating over a network. For example, the control
head-end 404 and/or any of the optimized protocol process-
ing engines 406a-k may receive network communication
data through any of the network communication interfaces
410a, 4105, and/or 410¢ that is transmitted over the network
208 by an external system 210. While only three network
communication interfaces 410a, 4105, and 410c¢ are illus-
trated, any number of network communication interfaces are
envisioned as falling within the scope of the present disclo-
sure.

Referring now to FIGS. 2, 3, 4, and 5, a method 500 for
network communications is illustrated. The method 500
begins at block 502 where a traffic type for an application
processing engine is determined. In an embodiment, at block
502, any of the application processing systems 202a, 2025,
or 202¢ may communicate (e.g., using the application pro-
cessing engine 302 and through the communication interface
304) over the bus 206 to the optimized protocol processing
system 204. That communication may include information

30

40

45

8

identifying a data traffic type requested by the application
processing engine 302. For example, an operating system/
application processing engine 302 may communicate raw
operating system data through a basic /O communication
interface 304 and over a PCle bus 206 to the optimized
protocol processing system 204 that requests a particular
traffic type that is associated with a particular optimized
protocol processing engine. At block 502, that request is
received by the optimized protocol processing system 204
(e.g., by the control head-end 404 through the application
processing system communication interface 408) and used
to identify the optimized protocol processing engine asso-
ciated with the traffic type that the application processing
engine 302 is requesting. In an embodiment, a protocol may
be defined for communication over the basic I/O commu-
nication interface 304 such that the optimized protocol
processing system 204 can identify the traffic type (e.g., the
raw data transmitted over the basic I/O communication
interface 304 may include a unique sequence of bits in the
unformatted data stream that identifies a structure for the
data that follows).

The method 500 then proceeds to block 504 where a
connection request is received. As discussed in further detail
below, in different embodiments, the connection of an exter-
nal system 210 and any of the application processing sys-
tems 202a, 2025, or 202¢ through the optimized protocol
processing system 204 may be initiated by the optimized
protocol processing system 204 or serviced by the optimized
protocol processing system 204 in response to an initiation
by the external system 210. In those different embodiments,
block 504 and decision block 506 are different. Thus, each
of those embodiments are described separately below, fol-
lowed by a common description for the remaining method
blocks.

Referring now to FIG. 6, an embodiment of a packet 600
is illustrated that may be used to perform the connection
request at block 504. One of skill in the art will recognize
that the packet 600 in the illustrated embodiment is a TCP
packet. However, other packet types are envisioned as
falling within the scope of the present disclosure. The use of
a TCP packet to identity the TCP stack of a connection is
described in detail in U.S. Pat. No. 7,991,008 (hereafter “the
‘008’ patent), invented by a co-inventor of the present
disclosure, Robert L. Winter, and assigned to the assignee of
the present disclosure, Dell Products L.P., the disclosure of
which is incorporate by reference herein. The present dis-
closure builds upon the disclosure of the 008 patent by
providing a protocol processing engine identifier (that iden-
tifies an optimized protocol processing engine) in the data
field of a TCP packet that has been identified as a synchro-
nization (SYN) packet due to the setting of a SYN bit in the
TCP packet.

In an embodiment in which the connection of an external
system 210 and one of the application processing systems
202a, 202b, or 202¢ through the optimized protocol pro-
cessing system 204 is initiated by the external system 210,
the connection request at block 504 is sent by the external
system 210 and received by the optimized protocol process-
ing system 204 over the network 208. For example, at block
504, the external system 210 may use a protocol processing
engine such as, for example, a TCP/IP stack in the external
system 210, to send the packet 600 over the network 208 to
the optimized protocol processing system 204. In an
embodiment, that packet 600 may request a specific appli-
cation and/or service of the application processing system
202a by designating the packet 600 a SYN packet through
the setting of the SYN bit 602 and providing a protocol

US 9,491,265 B2

9

processing engine identifier 604 in a data field 606 of the
packet 600. The table below illustrates a plurality of possible
a protocol processing engine identifiers 604 that may be
included in the data field 606 of the packet 600:

001 iSCSI

002 IWARP

003 Multipath

004 Wireless

005 HTTP

006 DCTP

007 Live VM Migration
200-999 Proprietary

One of skill in the art will recognize that the protocol
processing engine identifiers in the table above are codes
corresponding to the optimized TCP/IP stacks discussed
above. However, codes for a variety of other optimized
protocol processing engines are envisioned as falling within
the scope of the present disclosure. At block 504, the control
head-end 404 in the optimized protocol processing system
204 receives the packet 600 through one of the network
communication interfaces 410a, 4105, or 410¢, determines
that the packet 600 is a SYN packet due to the setting of the
SYN bit 602, and in response, reads the protocol processing
engine identifier 604 from the data field 606 of the packet
600.

The method 500 then proceeds to decision block 506
where it is determined whether the requested protocol pro-
cessing engine is available. At decision block 506, the
control head-end 404 determines whether the plurality of
optimized protocol processing engines 406a-/ include the
protocol processing engine identified by the protocol pro-
cessing engine identifier 604. If the plurality of optimized
protocol processing engines 406a-/ include the protocol
processing engine identified by the protocol processing
engine identifier 604, the control head-end 404 sends a SYN
packet that includes the protocol processing engine identifier
604 along with an acknowledge (ACK) packet back to the
external system 210 over the network 208 through one of the
network communication interfaces 410a, 4105, or 410c.
Then, upon the control head-end 404 receiving an ACK
packet back from the external system 210 over the network
208 through one of the network communication interfaces
410a, 4105, or 410c¢ (i.e., completing a “3-way handshake”),
the method 500 proceeds to block 512, discussed in further
detail below.

In an embodiment in which the connection of an external
system 210 and one of the application processing systems
202a, 202b, or 202¢ through the optimized protocol pro-
cessing system 204 is initiated by the optimized protocol
processing system 204, the optimized protocol processing
system 204 first receives a request from one of the applica-
tion processing systems 202a, 2025, or 202¢ for one of the
optimized protocol processing engines 406a-~ to handle
communications between itself and an external system 210.
For example, the control head-end 404 may receive the
request from any of the application processing systems
202a, 2025, or 202¢ for one of the optimized protocol
processing engines 406a-/ through the application process-
ing system communication interface 408 over the bus 206.
In response, the control head-end 404 initiates the connec-
tion request at block 504 with the external system 210
requested by the application processing system 202a, 2025,
or 202¢ by sending a packet 600 as a SYN packet through
the setting of the SYN bit 602 and providing a protocol
processing engine identifier 604 that identifies the optimized

10

20

25

30

35

50

55

60

65

10
protocol processing engine requested by the application
processing system 202a, 2025, or 202¢ in a data field 606 of
the packet 600, similarly as discussed above.

The method 500 then proceeds to decision block 506
where it is determined whether the requested protocol pro-
cessing engine is available. At decision block 506, if the
external system 210 is operable to read the protocol pro-
cessing engine identifier 604 sent by the optimized protocol
processing system 204 in the SYN packet and includes the
optimized protocol processing engine requested by the
application processing system 202a, 2025, or 202¢, the
external system 210 sends a SYN packet including the
protocol processing engine identifier 604 in its data field
606, along with an ACK packet over the network 208 to the
optimized protocol processing system 204. The optimized
protocol processing system 204 receives the SYN packet
including the protocol processing engine identifier 604 in its
data field 606 back from the external system 210, the control
head-end 404 determines that the requested protocol pro-
cessing engine is available in the optimized protocol pro-
cessing engines 406a-# at decision block 506, and the
method 500 then proceeds to block 512, discussed in further
detail below.

In either embodiment (a connection initiated by the exter-
nal system 210 or a connection initiated by the optimized
protocol processing system 204), if at decision block 506 it
is determined that the requested protocol processing engine
is not available (e.g., in the external system 210 or in the
optimized protocol processing system 204), the method 500
proceeds to decision block 508 where it is determined
whether to close the connection or use a default protocol
processing engine. For example, the control head-end 404
may determine that the external system 210 has requested a
protocol processing engine that is not one of the optimized
protocol processing engines 406a-k, or that the external
system 210 does not include the optimized protocol pro-
cessing engine requested by the application processing sys-
tem 202a, 2025, or 202¢, and, in response, determine
whether to close the connection or use a default protocol
processing engine at decision block 508. If, at decision block
508, it is determined that the connection should be closed,
the method 500 proceeds to block 510 where the connection
is closed such that the application processing system 202a,
2025, or 202¢ and the external system 210 do not commu-
nicate, discussed in further detail below. If, at decision block
508, it is determined that a default protocol processing
engine should be used, the method 500 proceeds to block
512.

At block 512, a protocol processing engine is selected and
connection state variables are passed to that protocol pro-
cessing engine. In an embodiment where block 512 is
performed following a determination to use a default pro-
tocol processing engine at decision block 508, the eighth
protocol processing engine 4064, illustrated as an optimized
general purpose protocol processing engine, may be selected
by the control head-end 404 and passed connection state
variables. In an embodiment where the one of the optimized
protocol processing engines 406a-/ requested by the appli-
cation processing system 202a, 20256, or 202¢ was deter-
mined at decision block 506 to be included in the external
system 210, that optimized protocol processing engine may
be selected by the control head-end 404 and passed connec-
tion state variables. In an embodiment, where the one of the
optimized protocol processing engines 406a-/ requested by
the external system 210 was determined at decision block
506 to be included in the optimized protocol processing
system 204, that optimized protocol processing engine may

US 9,491,265 B2

11

be selected by the control head-end 404 and passed connec-
tion state variables. In an embodiment, passing connection
state variables may include transmitting the connection state
of'the external system 210 (e.g., the TCP/IP stack connection
in the external system 210) to the selected optimized pro-
tocol processing engine. In an example, connection state
variables for TCP may include options such as maximum
segment size, window size, selective acknowledgements
permitted, and TCP state machine states such as LISTEN,
SYN-SENT, SYN-RECEIVED, ESTABLISHED, FIN-
WAIT-1, FIN-WAIT-2, CLOSE-WAIT, CLOSING, LAST-
ACK, TIME WAIT, and CLOSED. These connection state
variables may be passed from the control head-end 404 to
the flow selected state in order to keep track of the connec-
tion state variables and what state the connection is in, while
sequence numbers may be provided and maintained on the
data itself.

The method 500 then proceeds to block 514 where a flow
path is set for protocol processing engine communication
data and control data. In an embodiment, the control head-
end 404 then sets a flow path in the optimized protocol
processing system 204 for the optimized protocol processing
engine selected at block 512. The setting of the flow path in
the optimized protocol processing system 204 includes
setting flow rules to direct data communications and control
communications received through one of the network com-
munication interfaces 410a, 1405, or 410c¢ to the selected
optimized protocol processing engine. In an embodiment,
the flow path is the path along the connection that the data
will travel over (e.g., the physical port or ports that data is
transmitted through.) In an embodiment, the setting of the
flow path may include selecting one of the plurality of
network communication interfaces 410a, 4105, or 410c¢ by
the optimized protocol processing engine selected at block
512. For example, the optimized protocol processing engine
may select one of the plurality of network communication
interfaces 410a, 4105, or 410¢ based on a type of data flow
(e.g., similar to a TCP stack—one from column A, one from
column B—to select the best pairing of level 3 and 4
(TCP/IP) and level 2 (NIC)).

With the connection state variables passed to the selected
optimized protocol processing engine and the flow path set
in the optimized protocol processing system 204, the method
500 proceeds to block 516 where data transfer is begun, and
then to decision block 518 where it is determined whether
data transfer is complete. The setting of the flow path by the
control head-end in block 512 results in all packets from a
source to its destination being recognized and routed prop-
erly to the selected optimized protocol processing engine in
the optimized protocol processing system 204. Following
block 514, data transfer is performed between a protocol
processing engine (e.g., a TCP/IP stack) in the external
system 210 and one of the application processing systems
202a, 202b, and 202¢ through one of the optimized protocol
processing engines 406a-/ (e.g., an optimized TCP/IP stack)
in the optimized protocol processing system 204. Data sent
from an application processing system 202a, 2025, or 202¢
to the external system 210 is provided from the application
processing engine 302, through the communication interface
304, over the bus 206, through the application processing
system communication interface 408, over the flow path set
at block 514 such that the communication is handled by one
of the optimized protocol processing engines 406a-~ and
provided through one of the network communication inter-
faces 410a, 4105, or 410¢, and then over the network to the
external system 210. Likewise, data sent from the external
system 210 to an application processing system 202a, 2025,

10

15

20

25

30

35

40

45

50

55

60

65

12

or 202¢ is sent over the network 208 by the external system
210, received through one of the network communication
interfaces 410qa, 4105, or 410c¢, sent over the flow path set at
block 514 such that the communication is handled by one of
the optimized protocol processing engines 406a-/# and pro-
vided through the application processing system communi-
cation interface 408, over the bus 206, through the commu-
nication interface 304, and to the application processing
engine 302.

Such sending of data between the application processing
system 202a, 2025, or 202¢ and an external system 210
occurs until the data transfer is determined to be complete at
decision block 518, at which time the method 500 proceeds
to block 510 where the connection is closed. In an embodi-
ment, data transfer may be determined to be complete by the
optimized protocol processing engine handling the commu-
nications/data transfer, resulting in the optimized protocol
processing engine initiating the closing of the connection at
block 510. In another embodiment, data transfer may be
determined to be complete by the external system 210,
resulting in the external system 210 initiating the closing of
the connection at block 510. For example, when the session
ends, the TCP/IP stack in the external system 210 may send
a packet (similar to the packet 600 discussed above with
reference to FIG. 6) that includes a set FIN bit to the
optimized TCP/IP stack in the optimized protocol process-
ing system 204. In either case, at block 510, the connection
between the protocol processing engine (e.g., a TCP/IP
stack) in the external system 210 and the optimized protocol
processing engine (e.g., an optimized TCP/IP stack) in the
optimized protocol processing system 204 is closed. Thus, in
some embodiments, the control head-end is responsible for
the connection open sequence, while the optimized protocol
processing engine selected according to the method 500 is
responsible for the connection close.

Referring now to FIGS. 7a and 75, particular embodi-
ments of a networked system 700 that is similar to the
networked system 200 discussed above with reference to
FIG. 2 are illustrated. Each of the networked systems 700
include a first server 702 including an operating system 704
(i.e. an embodiment of an application processing engine)
coupled to an I/O interface 704. Each of the networked
systems 700 also include an optimized TCP/IP system 708
including an I/O interface 710. The optimized TCP/IP
system 708 includes a TCP head-end (i.e., an embodiment of
the control head-end) that is coupled to a plurality of
optimized TCP/IP stacks 714 (i.e., an embodiment of the
optimized protocol processing engines), with each of the
TCP head-end 712 and the optimized TCP/IP stacks 714
coupled to the I/O interface 710 and a plurality of NICs 716.
The NICs 716 couple the optimized TCP/IP system 708 to
a network 718 that is also coupled to an external system 720.
The external system includes a TCP/IP stack 722 that is
coupled to a NIC 724 that couples the external system 720
to the network 718.

The embodiment of the networked system 700 of FIG. 7a
illustrates the situation in which the connection between the
external system 720 and the first server 702 is initiated by
the optimized TCP/IP system 708. As illustrated and
described above, in this embodiment, the operating system
704 requests the 4th optimized TCP/IP stack 714 to handle
communications between itself and the external system 720
by sending that request through the I/O interface 706 and the
1/O interface 710 to the TCP head-end 712 (e.g., the oper-
ating system 704 tells the TCP head-end 712 that it needs a
TCP/IP stack optimized for iSCSI). In response, the TCP
head-end 712 sends a SYN packet 726 identifying the 4th

US 9,491,265 B2

13

optimized TCP/IP stack 714 through the NIC 716, through
the network 718, through the NIC 724, and to the TCP/IP
stack 722 (e.g., the TCP head-end 712 asks the TCP/IP stack
722 if it is optimized for iSCSI). If the external system 720
includes the functionality to read the 4th optimized TCP/IP
stack 714 identifier in the SYN packet 726 and the TCP/IP
stack 722 is similar to the 4th optimized TCP/IP stack, the
TCP/IP stack 722 sends a SYN packet 728 identifying the
4th optimized TCP/IP stack 714 along with an ACK packet
728 back through the NIC 724, over the network 718,
through the NIC 716, and to the TCP head-end 712 (e.g., the
TCP/IP stack 722 confirms that it is optimized for iSCSI). In
response to receiving the SYN packet 728 identifying the
4th optimized TCP/IP stack 714 and ACK packet 728, the
TCP head-end 712 sends an ACK packet 730 through the
NIC 716, through the network 718, through the NIC 724,
and to the TCP/IP stack 722 to complete a “3-way hand-
shake”. The TCP head-end 712 then selects the 4th opti-
mized TCP/IP stack 714 (e.g., that is optimized for iSCSI),
passes connection state variable to the 4th optimized TCP/IP
stack 714 and sets the flow path in the optimized TCP/IP
system 708 such that the 4th optimized TCP/IP stack 714
handles communication 732 and 734 between the operating
system 704 and the TCP/IP stack 722 that occur through the
1/0O interface 706 and the I/O interface 710, are handled by
the 4th optimized TCP/IP stack 714, sent through the NIC
716, over the network 208, through the NIC 724, and to the
TCP/IP stack 722, and vice versa.

The embodiment of the networked system 700 of FIG. 75
illustrates the situation in which the connection between the
external system 720 and the first server 702 is initiated by
the external system 720. As illustrated and described above,
in this embodiment, the external system requests the 4th
optimized TCP/IP stack 714 to handle communications
between itself and the first server 702 by sending a SYN
packet 736 that identifies the 4” optimized TCP/IP stack 714
through the NIC 724, over the network 718, through the NIC
716, and to the TCP head-end 712 (e.g., the TCP/IP stack
722 requests to communicate with the operating system 704
using a TCP/IP stack optimized for iSCSI). In response, the
TCP head-end 712 sends a SYN packet 738 identifying the
4th optimized TCP/IP stack 714 (e.g., that is optimized for
iSCSI) along with an ACK packet 738 back through the NIC
716, over the network 718, through the NIC 724, and to the
TCP/IP stack 722 (e.g., the TCP head-end 712 confirms that
a TCP/IP stack that is optimized for iSCSI is available for
handling communications). Then, in response to receiving
an ACK packet 740 sent from the TCP/IP stack 722, through
the NIC 724, through the network 718, and through the NIC
716, the TCP head-end 712 then selects the 4th optimized
TCP/IP stack 714, passes connection state variable to the 4th
optimized TCP/IP stack 714 and sets the flow path in the
optimized TCP/IP system 708 such that the 4th optimized
TCP/IP stack 714 handles communication 742 and 744
between the operating system 704 and the TCP/IP stack 722
that occur through the I/O interface 706 and the I/O interface
710, are handled by the 4th optimized TCP/IP stack 714, sent
through the NIC 716, over the network 208, through the NIC
724, and to the TCP/IP stack 722, and vice versa.

Thus, systems and methods have been described that split
application processing services from network communica-
tion services by providing an optimized network communi-
cation protocol system that can provide an optimized net-
work communication protocol for different types of
communications between a system that processes applica-
tions and an external system using those applications. The
systems and methods of the present disclosure allow for

10

15

20

25

30

35

40

45

50

55

60

65

14

protocol processing engine (e.g., TCP/IP stack) develop-
ment, improvement, and application specific improvements
to continue in parallel with application development and
independent of resources available in the systems that pro-
cess those applications. Furthermore, the systems and meth-
ods of the present disclosure will not interfere with standard
generic protocol processing engines (e.g., generic TCP/IP
stack communications) as they do not change the TCP state
machine, nor do they require recognition of the protocol
processing engine identifier in the SYN packet to initiate a
connection.

Although illustrative embodiments have been shown and
described, a wide range of modification, change and substi-
tution is contemplated in the foregoing disclosure and in
some instances, some features of the embodiments may be
employed without a corresponding use of other features.
Accordingly, it is appropriate that the appended claims be
construed broadly and in a manner consistent with the scope
of the embodiments disclosed herein.

What is claimed is:

1. A protocol processing system, comprising:

a first communication interface that is configured to
couple to an application processing system; at least one
second communication interface that is configured to
couple to an external system; a control head-end that is
configured to receive a request that includes a requested
protocol processing engine and the external system
and, in response, provide a

protocol processing engine identifier in a data field of a
first synchronization packet that is sent through the at
least one second communication interface to the exter-
nal system; and

a plurality of optimized protocol processing engines
coupled to the control head-end, wherein in response to
receiving an acknowledge packet and a second syn-
chronization packet including a data field having the
protocol processing engine identifier from the external
system through the at least one second communication
interface, the control head-end is configured to select a
first optimized protocol processing engine of the plu-
rality of optimized protocol processing engines that is
identified by the protocol processing engine identifier
by:

providing a plurality of connection state variables to the
first optimized protocol processing engine; and

setting a flow path for communications between the
application processing system and the external system
through the first optimized protocol processing engine;

wherein in response to being selected, the first optimized
protocol processing engine handles communications
between the application processing system and the
external system;

wherein the control head-end is configured to select the
first optimized protocol processing engine that is iden-
tified by the protocol processing engine identifier by:

providing a plurality of connection state variables to the
first optimized protocol processing engine; and

setting a flow path for communications between the
application processing system and the external system
through the first optimized protocol processing engine.

2. The protocol processing system of claim 1, wherein the

control head-end is configured to receive the request that
includes the requested protocol processing engine and the
external system from the application processing system.

3. The protocol processing system of claim 2, wherein the

request including the requested protocol processing engine

US 9,491,265 B2

15

and the external system that is received from the application
processing system is received as an unformatted data stream.

4. The protocol processing system of claim 1, wherein the
control head-end is configured to receive the request that
includes the requested protocol processing engine and the
external system from the first optimized protocol processing
engine.

5. The protocol processing system of claim 1, wherein the
at least one second communication interface that is config-
ured to couple to the external system includes a plurality of
second communication interfaces that are configured to
couple to the external system, and wherein the first opti-
mized protocol processing engine is configured to select one
of the plurality of second communication interfaces for use
in handling communications between the application pro-
cessing system and the external system.

6. The protocol processing system of claim 1, wherein the
first optimized protocol processing engine is an optimized
Transmission Control Protocol/Internet Protocol (TCP/IP)
processing engine that receives operating system data
through the first communication interface from the applica-
tion processing system, and sends external system commu-
nication data through the at least one second communication
interface to the external system.

7. An information handling system (IHS), comprising:

a processing system;

a plurality of communication interfaces coupled to the

processing system; and

a memory system storing a plurality of optimized protocol

stacks, wherein the memory system is coupled to the
processing system and includes instructions that, when
executed by the processing system, cause the process-
ing system to: receive a request that includes a
requested protocol stack and an external system and, in
response, send a first synchronization packet including
a data field having a protocol stack identifier through
one of the plurality of communication interfaces to the
external system; receive an acknowledge packet and a
second synchronization packet including a data field
having the protocol stack identifier from the external
system through one of the plurality of communication
interfaces; and

configure a first optimized protocol stack of the plurality

of optimized protocol stacks that is identified by the
protocol stack identifier to handle communications
between two of the plurality of communication inter-
faces by: providing a plurality of connection state
variables to the first optimized protocol stack; and
setting a flow path for communications between the
two of the plurality of communication interfaces
through the first optimized protocol stack.

8. The IHS of claim 7, wherein the request that includes
the requested protocol stack and the external system is
received from an application processing system.

9. The IHS of claim 8, wherein the request including the
requested protocol stack and the external system that is

10

15

20

25

30

35

40

45

50

55

16

received from the application processing system is received
as an unformatted data stream.

10. The IHS of claim 7, wherein the request that includes
the requested protocol stack and the external system is
received from the first optimized protocol stack.

11. The IHS of claim 7, wherein the instructions in the
memory system include instructions that, when executed by
the processing system, cause the processing system to:

select one of the plurality of communication interfaces for

use in handling communications with the external
system.
12. The IHS of claim 7, wherein the first optimized
protocol stack is an optimized Transmission Control Proto-
col/Internet Protocol (TCP/IP) stack that receives operating
system data through a first of the two of the plurality of
communication interfaces, and sends external system com-
munication data through a second of the two of the plurality
of communication interfaces.
13. A method for network communication, comprising:
receiving a request that includes a requested protocol
processing engine and an external system and, in
response, sending a first synchronization packet includ-
ing a data field having a protocol processing engine
identifier through one of a plurality of communication
interfaces to the external system;
receiving an acknowledge packet and a second synchro-
nization packet including a data field having the pro-
tocol stack identifier from the external system through
one of the plurality of communication interfaces; and

configuring a first optimized protocol processing engine
of a plurality of optimized protocol processing engines
that is identified by the protocol processing engine
identifier to handle communications between two of the
plurality of communication interfaces by:
providing a plurality of connection state variables to the
first optimized protocol processing engine; and

setting a flow path for communications between the two
of the plurality of communication interfaces through
the first optimized protocol processing engine.

14. The method of claim 13, wherein the request that
includes the requested protocol processing engine and the
external system is received from an application processing
system.

15. The method of claim 14, wherein the request including
the requested protocol processing engine and the external
system that is received from the application processing
system is received as an unformatted data stream.

16. The method of claim 13, wherein the request that
includes the requested protocol processing engine and the
external system is received from the first optimized protocol
processing engine.

17. The method of claim 13, further comprising:

selecting one of the plurality of communication interfaces

for use in handling communications with the external
system.

